首页 > 观点 > 正文

世界热推荐:九年级数学总复习手册答案青岛_九年级数学总复习知识点

2023-04-26 22:58:24来源:互联网


(资料图片)

1、锐角三角函数 1.锐角三角函数的概念: 在Rt△ABC中(1)锐角∠A的对边与斜边的比值是∠A的正弦,记作sinA= ∠A的对边斜边 ;(2)锐角∠A的邻边与斜边的比值是∠A的余弦,记作cosA= ∠A的邻边斜边 ;(3)锐角∠A的对边与邻边的比值是∠A的正切,记作tanA= ∠A的对边∠A的邻边 ;(4)锐角∠A的邻边与对边的比值是∠A的余切,记作cota= ∠A的邻边∠A的对边 ;(5)坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平面宽度的比称为坡度i(或坡比),既坡度等于坡角的正切,记做 ;(6)锐角A的正弦,余弦,正切和余切都叫做∠A的锐角三角函数;注:sinA,cosA,tanA,cotA是在直角三角形中定义的(注意数形结合,构造直角三角形).她的实质是一个比值其大小只与∠A的大小有关. 2.互余两角之间的三角函数关系:(1)一个锐角的正弦等于它的余角的余弦,既sinA=cosB,或sinB=cosA;(2)一个锐角的余弦等于它的余角的正弦,既cosA=sinB,或cosB=sinA;(3)一个锐角的正切等于它的余角的余切,既tanA=cotB,或tanB=cotB;(4)一个锐角的余切等于它的余角的正切,既cotA=tanB,或cotB=tanA;3.同角之间的三角函数关系:(1)平方和关系: ;(2)倒数关系: ;(3)商的关系: .4.特殊角的三角函数值:α sin cos tan cot 30° 45° 1 160° 解直角三角形明确解直角三角形的依据和思路 在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础. 如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是 (1)边角之间的关系:sinA=cosB= , cosA=sinB= ,tanA=cotB= ,cotA=tanB= ;(2)两锐角之间的关系:A+B=90°;(3)三条边之间的关系: . 以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解.2、解直角三角形的基本类型和方法 我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢? 事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的.由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长.所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边.这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形.四种基本类型和解法列表如下: 已知条件 解法 一边及一锐角 直角边a及锐角A B=90°-A,b=a•tanA,c= 斜边c及锐角A B=90°-A,a=c•sinA,b=c•cosA 两边 两条直角边a和b ,B=90°-A, 直角边a和斜边c sinA= ,B=90°-A, 初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节.重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用.同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习.因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一.一、 紧扣大纲,精心编制复习计划初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的.因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划.计划的编写必须切合学生实际.可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成.然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点.复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标.二、 追本求源,系统掌握基础知识复习开始的第一阶段,首先强调学生系统掌握课本上的基础知识和基本技能,过好课本关.对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成.三、 系统整理,提高复习效率总复习的第二阶段,要特别体现教师的主导作用.对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点.例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分.几何分为4块13线:第一块为以解直角三角形为主体的1条线.第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质.(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆.第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹.这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”.中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容.四、 集中练习,争取最佳效果梳理分块,把握教材内容之后,即开始第三阶段的综合复习.这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用.通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量.对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的.精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性.第二,习题要有启发性、灵活性和综合性.如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效.。

本文就为大家分享到这里,希望小伙伴们会喜欢。

关键词:

责任编辑:孙知兵

免责声明:本文仅代表作者个人观点,与太平洋财富网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如有问题,请联系我们!

关于我们 - 联系方式 - 版权声明 - 招聘信息 - 友链交换 - 网站统计
 

太平洋财富主办 版权所有:太平洋财富网

中国互联网违法和不良信息举报中心中国互联网违法和不良信息举报中心

Copyright© 2012-2020 太平洋财富网(www.pcfortune.com.cn) All rights reserved.

未经过本站允许 请勿将本站内容传播或复制 业务QQ:3 31 986 683